Surface feature of the substrate via key factor on adhesion of Cr/Cr2N multilayer and alloy substrate
编号:96 访问权限:PARTICIPANT_ONLY 更新:2024-10-13 22:05:31 浏览:1345次 口头报告

报告开始:2024-10-20 15:15

报告时间:15min

所在会场:[S2] Thin Film Technologies and Applications [S2C] Session 2C

暂无文件

摘要
This study employed a combination of direct current magnetron sputtering and high-power pulse magnetron sputtering techniques to deposit Cr/Cr2N multilayer coatings on Cr-Ni-Mo-V steel substrates that had undergone mirror polishing, pickling, nitriding, and grinding. The microstructure, mechanical properties, and adhesion of the coatings were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), hardness testing, indentation testing, and scratch testing. When the roughness of substrates with the same hardness increased from 0.086μm to 0.744μm, the adhesion of the coating, Lc2, decreased by up to 41%. Substrates subjected to plasma nitriding exhibited the highest roughness. However, plasma nitriding refined the grains while maintaining a coherent interface between the coating and the substrate. Due to the combined effects of substrate load-bearing capacity and grain refinement in the coating, both the fracture toughness (by 54%) and adhesion (by 55%) of the coating were significantly enhanced, effectively compensating for the degradation in coating performance resulting from the increased roughness. The bearing capacity and ability to promote crystallization of the substrate surface are more crucial factors compared to its roughness.
 
关键词
surface feature,adhesion,hardness,surface roughness,multilayer
报告人
Xiaoyun Ding
University of Science and Technology Beijing, China

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10-18

    2024

    10-20

    2024

  • 10-17 2024

    报告提交截止日期

  • 10-20 2024

    注册截止日期

  • 11-18 2024

    初稿截稿日期

主办单位

中国机械工程学会表面工程分会

承办单位

大连理工大学
山东理工大学

联系方式