Improving inter-particle deformation and bonding by preserving transient in-situ deposition temperatures during cold spray
编号:148 访问权限:PARTICIPANT_ONLY 更新:2024-10-16 22:52:17 浏览:1385次 张贴报告

报告开始:2024-10-19 12:20

报告时间:20min

所在会场:[P0] Poster [P0] Poster

暂无文件

摘要
Cold Spray (CS) represents a solid-state coating process with promising applications in localized repairs and additive manufacturing. However, the weak inter-particle bonding limits the deposit properties due to low plastic deformation. In this study, the high temperature of the transient in-situ deposition surface shortly after particle impact is proposed to promote inter-particle deformation and bonding. A new in-situ deposit surface is formed after solid particle deposition, showing transient in-situ temperature due to the heat transfer between this particle and the overlay deposit. An equivalent time method is devised to obtain the transient in-situ deposition temperature by significantly accelerating the computation speed by nearly 1,000 times. Meanwhile, based on spatio-temporal independence, the time interval between deposited particles reaches thousands of microseconds, showing that the in-situ deposition surface tends to the low substrate temperature. Reducing the time interval between particle impacts enables new particles to be deposited onto surfaces at elevated in-situ temperatures, thus promoting better inter-particle bonding. The results provide a basis for increasing the in-situ surface transient temperature to improve the deposit quality.
 
关键词
transient in-situ deposition temperature; solid-state deposition; cold spray (CS); particle impact; heat transfer
报告人
Xiaoxue Dong
Xi'an Jiaotong University, China

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10-18

    2024

    10-20

    2024

  • 10-17 2024

    报告提交截止日期

  • 10-20 2024

    注册截止日期

  • 11-18 2024

    初稿截稿日期

主办单位

中国机械工程学会表面工程分会

承办单位

大连理工大学
山东理工大学

联系方式